Artificial neural networks for feedback control of a human elbow hydraulic prosthesis

نویسندگان

  • Vitoantonio Bevilacqua
  • Mariagrazia Dotoli
  • Mario Massimo Foglia
  • Francesco Acciani
  • Giacomo Tattoli
  • Marcello Valori
چکیده

The paper addresses feedback control of actuated prostheses based on the Stewart platform parallel mechanism. In such a problem it is essential to apply a feasible numerical method to determine in real time the solution of the forward kinematics, which is highly nonlinear and characterized by analytical indetermination. In this paper, the forward kinematics problem for a human elbow hydraulic prosthesis developed by the research group of Polytechnic of Bari is solved using artificial neural networks as an effective and simple method to obtain in real time the solution of the problem while limiting the computational effort. We show the effectiveness of the technique by designing a PID controller that governs the arm motion thanks to the provided neural computation of the forward kinematics. & 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming

Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

Comparative Study of Artificial Neural Networks (ANN) and Statistical Methods for Predicting the Performance of Ultrafiltration Process in the Milk Industry

Milk ultrafiltration is a membrane process, which is highly complex innature. The cost effectiveness of the process depends heavily on the flux permeate and the total hydraulic resistance of the membrane. In this work, a comparative study for the prediction of the performance of milk ultrafiltration with ANN and statistical method has been carried out. The result reveals that both methods c...

متن کامل

Velocity Control of Electro Hydraulic Servo System by using a Feedback Error Learning Method

In this paper, a new control method based on FEL electro hydraulic servo control withnonlinear flux and internal friction, has been presented. The new approach based oncontrollers combined by a classic PD controller and a fuzzy controller is smart. This newtechnique has a good ability to control the performance and stability. Simulations have beencarried out in Matlab environment and the result...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2014